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Abstract
Research in neuroscience and neuroengineering has attracted tremendous interest in the past decades. However, the com-
plexity of the brain tissue, in terms of its structural, chemical, mechanical, and optical properties, makes the interrogation 
of biophysical and biochemical signals within the brain of living animals extremely challenging. As a viable and versatile 
tool for brain studies, optical fiber based technologies have provided exceptional opportunities to unravel the mysteries of 
the brain and open the door for clinical applications in the treatment, diagnosis, and prevention of neurological diseases. 
Typically, optical fibers with diameters from 10 to 1000 μm are capable of guiding and delivering light to deep levels of 
the living tissue. Moreover, small dimensions of such devices along with their flexibility and light weight paved the way for 
understanding the complex behaviours of living and freely moving mammals. This article provides a review of the emerg-
ing applications of optical fibers in neuroscience, specifically in the mammalian brain. Representative utilities, including 
optogenetics, fluorescence sensing, drug administration and phototherapy, are highlighted. We also discuss other biological 
applications of such implantable fibers, which may provide insights into the future study of brain. It is envisioned that these 
and other optical fiber based techniques offer a powerful platform for multi-functional neural activity sensing and modulation.
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Introduction

The human brain, which contains hundreds of billions of 
neurons and glial cells, manages an entire range of activities 
of the body from breathing and perception to thinking and 

moving [1]. Systematic understanding of the brain structures 
and functionalities is crucial for advancing neuroscience 
and improving clinical therapeutics. Nevertheless, such a 
critically important organ is difficult to investigate due to its 
complicated structural, mechanical, optical, electrical and 
chemical properties. To resolve the functional structure of 
brain in vivo, various materials, devices and systems have 
been exploited to interrogate neural activities, by stimulating 
and detecting biophysical and biochemical signals in the liv-
ing systems. In particular, along with the rapid developments 
of genetically encoded optical actuators and indicators, 
optical based methods have been widely used to sense and 
modulate brain activities, which notably impacted the brain 
studies. Optical techniques are suitable for brain research 
because light can penetrate through brain tissue at a moder-
ate depth in a minimally invasive way, helping us understand 
neural circuits at high spatial, temporal and spectral resolu-
tions with desirable cell specificity. However, there remain 
a variety of main challenges in this area, including: (1) how 
to guide light to the targeted region while the penetration 
depth of visible and near-infrared light is limited, (2) how to 
collect and transmit the light emission, (3) how to reach the 
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targeted area within living tissue in a less invasive manner, 
and (4) how to simultaneously modulate and detect multi-
mode (optical, electrical, chemical, etc.) brain signals [2, 3].

To overcome these challenges, various optical materi-
als and devices have been introduced, such as integrated 
microscale light emitting diodes (μLEDs) [4], planar wave-
guides and integrated photonics [5, 6], engineered optical 
fibers [7–9] and nanoparticles [10]. Among them, optical 
fibers have attracted considerable attention in biomedical 
fields due to their optical transparency, mechanical flexibil-
ity, ideal biocompatibility, as well as mature manufactur-
ing feasibility that can easily be adopted from silica fibers 
used for telecommunications [11, 12]. Specifically, optical 
fiber-based devices have also exhibited intense potential as 
advanced neural interfaces for brain studies. Current litera-
ture has witnessed that fibers made of different materials, 
including conventional silica and flexible, stretchable, and 
biodegradable nature-derived materials, have been exten-
sively explored as optical neural interfaces [5, 6]. Further-
more, devices made from these fibers with various functions, 
have also been acknowledged as having prevalent usage in 
optical instrumentation of brain-related studies and clinical 
applications [13].

With the flourishing of research on optical fibers for 
brain studies, various kinds of fibers for different applica-
tions, such as sensing, stimulating and treatment, have been 
developed. Correspondingly, light over the wavelength range 
of visible and near infrared (NIR) is used for different appli-
cations. For instance, in a typical optogenetics experiment, 
neurons can undergo depolarization and hyperpolariza-
tion when exposed in 480 ± 10 nm (blue) and 580 nm (yel-
low) light stimuli, respectively, when using Halorhodop-
sin (NpHR) and channelrhodopsin-2 (ChR2) opsins [14]. 
Moreover, photodynamic therapy widely uses wavelengths 
between 600 and 800 nm (red), where longer wavelengths 
show better tissue penetrations [15]. A conceptual sketch 
illustrated in Fig. 1 (left) illustrates the various applications 
of optical fibers utilizing different wavelengths in brain 
studies. Accordingly, Fig. 1 (right) provides an example of 

optical fiber implanted in brain of animals and coupled to 
blue light for delivering optical signals.

Previous reviews [13, 16–18] have overviewed implant-
able optical waveguides and fibers focusing on the materials 
and fabrication methods together with their applications in 
imaging, biosensing, surgery, therapy and optogenetics. Dif-
fering from them, the present article provides a comprehen-
sive review of fiber-optic based devices with various appli-
cations particularly in brain, not only including optogenetics 
and fluorescence photometry, but also highlighting other 
recently reported sensing capabilities, for example, tracking 
the temperature, pressure and oxygen of the brain, photody-
namic therapy (PDT) for curing brain tumors, and delivering 
drugs and neurotransmitters [19–24]. We also incorporate 
the discussion of fibers with other biological applications, 
like glucose, strain, and chemical sensing, currently used in 
non-brain tissues, which may provide insight into the future 
development of brain-related biomedical applications.

Optogenetics

To understand how brain neural circuits work, as well as 
how they become dysfunctional in particular disease states, 
methods to break down the complexity of brain with a proper 
precision level are required. The emergence of optogenetic 
tools has made it possible to dissect nervous system with 
highest degree of specificity [25, 26]. This groundbreaking 
technology has emerged as a potential approach in neurosci-
ence research, not only capable to enrich our understand-
ing of brain functions, but also capable to offer methods 
for neuroglial brain disorder diagnostics (e.g., Alzheimer 
[27], Parkinson [28], Epilepsy [29] and depression-related 
disorders [30]).

The emerging and powerful optogenetic method uses the 
combination of light and genetically modified microbial 
rhodopsins or animal/vertebrate opsins to manipulate neural 
activities [31–33]. The major optogenetic tools “Opsins” are 
transmembrane proteins whose conformation changes upon 

Fig. 1  Schematic illustration of 
an implantable fiber for applica-
tions in brain research
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being exposed to light. Accordingly, opsin-expressing cells 
also experience a change in its membrane potential when 
illuminated. Up to now, there are different types of excita-
tory opsins, including channelrhodopsin-2 (ChR2) which 
depolarizes neurons in response to light. Inhibitory opsins 
that hyperpolarize neurons upon lighting have also been pro-
posed, e.g., halorhodopsin and archaerhodopsin [26, 33, 34]. 
These opsins typically present excitation spectra within the 
visible range, where the scattering and absorption properties 
of the tissue result in limited penetration depth of light in 
living tissue. Over the last decades, wide varieties of opsins 
with various absorption spectra have been established [15, 
35]. In addition to opsins, the success of optogenetics would 
also benefit significantly from the development of neuron 
probes. In light of these, a desirable optogenetics implant to 
link the complicated nervous system and the external world 
shall comply with the following requirements: capability 
to deliver light deep to the brain tissue, light weight and 
biocompatibility.

Implantable optical fibers are the first devices applied in 
optogenetics experiments and still are the best option for 
transmitting light into the deep brain region, especially in 
free-moving mammals. Primarily, these optical fibers were 
made of silica (Fig. 2a) [13]. A representative image of an 
early optogenetic experiment in free-moving mouse utilizing 
silica fiber is shown in Fig. 2b. Furthermore, these optical 
fibers can be integrated with classical recording electrodes 
like Utah and Michigan probes, for simultenous optogenetic 
stimulation and electrophysiological recording [36, 37].

Such optical fibers not only have a high optical trans-
parency in a wide range of wavelengths, but also have a 
very low propagation loss (as low as 0.2 dB/km) within 
the near-infrared range [13]. However, in contrast to above 
advantages, silica fibers are rigid and brittle with an average 
Young’s modulus (10–100 GPa), which is several orders of 
magnitude larger than that of neural tissue (~ 1 kPa) [38].

Such mechanical properties cause them to easily damage 
the surrounding tissues, which confronted scientists with 
an inevitable challenge. To alleviate this problem, scientists 
considered soft, biocompatible, and biodegradable poly-
mers or bio-derived materials such as silk in order to realize 
more biocompatible fibers [39–42]. Recently, several soft 
and elastic polymeric materials have been used to fabricate 
optical fibers, with a reduced immune reaction and steady 
performance during chronic implantations. An example of 
this approach was given in 2018 by Lu and co-workers, who 
developed a novel alginate-PAM hydrogel optical fiber with 
an extremely efficient and effective transmission, as well as 
exceeding stretchability and low modulus (from a few to 
thousands of kPa) [39]. This optical fiber was built through 
the cross-linking and one-step polymerization process of 
the alginate-PAM precursors in tube molds in a variety of 
sizes. Figure 2c illustrates blue light-emitting diode coupled 

with mentioned hydrogel optical fiber along with uniform 
irradiation. The optogenetic stimulation by implanted hydro-
gel fibers in the early motor cortex could highly modulate 
the behavior of the animal, whose results are presented in 
Fig. 2c. However, fully biodegradable and bioresorbable 
optical fibers were still desired within the domain of optoge-
netics. In this regard, Fu et al. [41] offered another approach, 
in which a biodegradable optical fiber with poly (l-lactic 
acid) (refractive index n = 1.47) as a key material was devel-
oped to deliver light deep to the tissue and spare the sec-
ondary surgery damage throughout the implantation. The 
thermal drawing method was applied to fabricate the PLLA 
biodegradable fiber (bending stiffness ~ 1.5 ×  104 N/m) using 
similar geometry (e.g., diameter 220 μm) with standard 
silica fibers (bending stiffness ~ 2.4 ×  105 N/m). The PLLA 
fiber implanted in the hippocampus (HPC) of free mov-
ing mice and connected to a blue light source is presented 
in Fig. 2d. Whenever light is transmitted to HPC through 
PLLA fiber, a seizure is induced in response that triggers the 
mice and increases its distance of travel. The ratio of such 
distances without and with optical stimulation is shown in 
Fig. 2d. The decrease in ratio of distance reflects that the 
aforementioned fiber degraded within 10–15 days.

As a matter of fact, in typical optical fibers, light travels 
along their axes and exits as a single light point from the tip 
of the fiber. Hence, it is useful to embrace numerous opti-
cal stimulation sites together with a single fiber. To achieve 
this, tapered optical fibers (TFs) have been introduced to 
illuminate focal or large brain region and enable simultane-
ous and selective optical stimulation [9, 43, 44]. Tuning the 
input light angle allows the optical modes exiting at variant 
vector positions along the tapered fiber. The technique is 
displayed in Fig. 2e. Researchers have demonstrated that 
by using optical fibers with tapered tips specific groups of 
cells could be targeted in the motor cortex such that dorsal 
neurons could be exempted from stimulation [44].

By combining polymer and other components, multi-
material multifunctional fibrous devices with both optoge-
netic and other applications (such as electrophysiological 
recording) have been proposed and fabricated [8, 45]. Such 
fibers are composed of various layers of polymers such as 
polycarbonate (PC), cyclic olefin copolymer (COC), con-
ductive poly etherimide (CPE), and composites of polymers 
with elastic moduli (1–10 GPa) lower than that of glasses 
(10–100 GPa) and fabricated through the thermal drawing 
process (TDP) [22]. These polymers have desirable mechan-
ical properties matching the brain tissue, which make them 
less likely to cause tissue damages and more compatible 
with long-time implant. Park et al. [46] have manifested an 
example of this approach and integrated polymeric materials 
together with a waveguide, electrodes and microfluidic chan-
nels into a single tool. In their work, fibers with a bending 
stiffness of ~ 80 N/m were accomplished by selecting the 
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PC as the core and COC as the cladding. When combined 
with brain tissue-like soft matters like hydrogels, multima-
terial fibers can achieve an even lower bending stiffness, 

futher reducing the stress field in the brain tissue surrend-
ing them. Park and co-workers have used polyacrylamide-
alginate (PAAm-Alg) hydrogel to combine with traditional 
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multimaterial fibers and obtained a tissue-like fiber with a 
bending stiffness of 0.42 N/m in hydrated state [47]. The 
hydrogel also endows the fiber with hydration-induced adap-
tive modulus, which enables its direct insertion into the brain 
in dried state. This fibrous device was implanted to brains 
of mice to track isolated single-neuron action potentials for 
over 6 months.

With multiple materials and layered structures, the func-
tions of these fibers are not limited to light delivery [14]. 
Coupled with metal connectors and hollowed tubes, such 
fibers are also able to deliver chemicals and record electric 
signals simultaneously [48–52]. This allows combination of 
electrophysiological recording and optogenetic stimulation, 
allowing feedback-based control of optogenetics [53]. With 
chemcial-delivering tubes, viral vector delivery and optical 
stimulation could be accomplished by a single multifunc-
tional fiber, achieving one-step optogenetics [46]. Figure 2f 
depicts a functional probe consisting of an electrical connec-
tor, an optical ferrule, and a tube for injection. The device 
maintained reliable and accurate performance for optical 
stimulation for up to several months as presented in Fig. 2f 
[46]. This technology permits one-step optogenetics and 
provides a persistent alternative to the current practices of 
optogenetics. In the present scenario, as another approach, 
a flexible and small thermally drawn multi-material fiber 
has been developed [52], which was composed of embed-
ded metal electrodes and a double-clad waveguide for opti-
cal stimulation. Such an arrangement highly improved the 
mechanical properties, enhanced the optical transmission, 
and minimized the impedance of probes more efficiently. 
Such properties also enabled a long-term simultaneous 

optical stimulation for at least 10 weeks along with neural 
recording at a single cell level in awake and behaving ani-
mal with high signal-to-noise ratio (SNR) of about 30 dB. 
As shown in Fig. 2g, such fiber probe together with distinct 
electrodes bearing 50 μm of diameter was implanted to supe-
rior colliculus of mice, and ultimately the success of mice 
behavioral manipulation was presented. It is expected that 
these newly developed fibers are capable to make a great 
change in neuroscience field. Owing to their complex struc-
tures, multimaterial fibers also have high design versatility 
which helps them meet more needs from applications. For 
example, with the guidance of a designed helica scaffold, 
multisite optogenetics, electric recording and drug delivery 
are achieved with a spatially expandable multimaterial fiber 
[48]. This device is capable to conduct electrical record-
ing and optical/chemical modulation across multiple distant 
regions in deep brain, suitable for study of more complex 
brain circuits and functions.

Fluorescence Photometry

Besides exploitation of optical fibers in investigating the 
brain through optogenetics, these tools have exhibited a 
great potential for incorporation of numerous functionalities 
which make them employable in many other applications, 
including fluorescence sensing of ion indicators via fiber 
photometry. Fiber photometry is a gold standard technique 
of optically stimulating and recording fluorescence signals 
from genetically targeted calcium indicators (GECIs) like 
GCaMPs and the most recently genetically encoded volt-
age indicators (GEVIs) in behaving animals [21, 54–56]. 
Using these indicators, fiber photometry provides cell-type 
information and reports the behavior of neuron population. 
In the photometry system, stimulation light is coupled into a 
tiny flexible optical fiber which delivers the excitation light 
into the targeted brain region to interact with the fluores-
cent activity indicators. Fluorescence emission from excited 
neurons will be collected by the same fiber and then guided 
to the other end of the fiber, where it is separated from the 
excitation light instantly via a dichroic mirror. Eventually, 
the fluorescence reaches a detector, where neural activities 
are recorded. Figure 3a illustrates the primary fiber photom-
etry system used to record activities of brain during mam-
malian behaviors [21]. In their work, they demonstrated that 
a typical silica fiber simultaneously delivered excitation 
light (475 nm) and collected the dynamic calcium signal 
emitted by the indicators in the targeted region. As depicted 
in the Fig. 3a, the intensity of the emitted fluorescence is 
highly correlated with the period of licking sucrose. Up till 
now, most of these experiments have relied on traditional 
flat-cleaved optical fibers out of silica with the diameter 
of 200–400 μm. Silica is used due to its lower losses in 

Fig. 2  Optogenetics. a Photograph of a silica optical fiber connected 
to a blue laser source. b Image of a mouse model with an implanted 
fiber for optogenetic experiments. Reproduced with permission [35]. 
Copyright 2015, Nature Publishing Group. c Light transmission 
through a soft hydrogel optical fiber (top) and distances of mice trav-
elling during optogenetic stimulations (bottom). Reproduced with 
permission [39]. Copyright 2018, Wiley–VCH. d Left: Schematic 
showing a PLLA based biodegradable fiber inserted to HPC; Right: 
Ratio of traveling distances for mice with and without optical stim-
uli. Reproduced with permission [41]. Copyright 2018, Wiley–VCH. 
e Left: Light distribution around a tapered optical fiber; Middle: A 
tapered fiber implanted into the mouse brain for optogenetics; Right: 
results of optogenetic manipulation. Reproduced with permission 
[44]. Copyright 2017, Nature Publishing Group. f A hybrid multi-
functional fiber allowing for optogenetic stimulation, electrophysiol-
ogy recording and virus injection. Top-left: cross-sectional view of 
the multifunctional probe; Top-right: schematic showing the probe 
implanted into mPFC of the mouse brain; Bottom: electrophysiologi-
cal signals recorded with a multifunctional fiber probe. Reproduced 
with permission [46]. Copyright 2017, Nature Publishing Group. g 
Left: A multimodal and flexible polymeric optical fiber implanted to 
the brain of a mouse for simultaneous optogenetics and electrophysi-
ology; Right: Measured velocity of movement of a behaving animal 
under optical stimuli. Reproduced with permission [52]. Copyright 
2020, Wiley–VCH

◂
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comparison with polymers. Nonetheless, recently optical 
fibers out of biodegradable polymers such as PLLA were 
also successfully utilized as photometry interfaces [14].

Despite the advantages of single fiber photometry, such 
as flexibility, light weight and deeper penetration depths 
in brain tissues, it sacrifices the cellular resolution due to 

limited size of the fiber core. To overcome this limitation, 
many research efforts have been devoted. For example, 
researchers have developed an ideal multi-channel fiber pho-
tometry capable to simultaneously record neural activities 
from several different regions of a mammalian brain (up to 
seven regions) or from various animals [57]. Accordingly, 

Fig. 3  Fluorescence Photometry. a Scheme of the primary fiber pho-
tometry system (top) and recorded calcium signals from the mouse 
brain expressing GCaMP (middle) and eYFP (bottom). Reproduced 
with permission [21]. Copyright 2014, Elsevier. b In vivo fiber pho-
tometry using tapered optical fiber. Top: Schematic of experimental 
setup and multi-site illumination via TF. Bottom: Recorded calcium 
signals from a mouse with an implanted TF. Reproduced with per-
mission [7]. Copyright 2019, Nature Publishing Group. c Left: Fiber 

photometry for recording fluorescence signals at multiple regions. 
Right: Simultaneously recorded calcium signals from 12 different 
regions using multi-array fibers. Reproduced with permission [58]. 
Copyright 2019, Nature Publishing Group. d Left: Schematic illus-
tration of an fiber-optic voltage sensor implanted to a brain. Right: 
Recorded voltage signals from targeted regions in an awake mouse. 
Reproduced with permission [56]. Copyright 2016, Elsevier
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a multi-brain-region fiber photometry for both head-fixed 
and freely moving animals has been recently manifested by 
Helmchen et al. They obtained parallel fluorescence record-
ings from 12 to 48 brain regions by allowing up to 48 fib-
ers to be placed into the grooves (Fig. 3c) [58]. Moreover, 
researchers have designed a spectrometer-based fiber pho-
tometry system to simultaneously measure the neuron activi-
ties from both direct- and indirect-pathways by using green 
and red GECIs [59].

In addition to widely used flat-cleaved optical fibers, 
TFs have also been employed in fiber photometry systems 
recently to create a depth-resolved fiber photometry based 
on mode-division demultiplexing [7]. As stated earlier in the 
optogenetics section, the tapered tips enable simultaneous 
and selective illumination, so that such tools are also capa-
ble for multisite signal collections via galvanometric mirror 
in fiber photometry systems. Figure 3b shows a practical 
example of such technique.

Study in this field has also addressed a few disadvan-
tages with respect to GECIs.  Ca2+ activity performs well 
in reflecting behaviors of animals, but reflects the spiking 
activity in cells poorly and cannot trace voltage waveform in 
time-scales finer than 25–100 ms. Thus, in 2016 researchers 
reported a non-CEGI fiber-optic technique to record voltage 
dynamics of genetically particular cells using opsin-FRET 
indicators within behaving mice as shown in Fig. 3d [56]. 
In this technique, a silica based multimodal fiber (diam-
eter ~ 400 μm) is utilized as the implant, which couples to 
external laser sources and photoreceivers for optical exci-
tation and recording. Trans-membrane Electrical Measure-
ments Performed Optically (TEMPO) method was used to 
facilitate the removal of physiologically induced noise and 
made the device approximately tenfold more sensitive than 
conventional fiber-optic method with respect to  Ca2+ sens-
ing. This sensitivity enhancement allowed a lower illumina-
tion power and recording of an hour long. Figure 3d states 
the validated results of TEMPO with consideration of hip-
pocampal and cortical oscillations in behaving mice.

Temperature Sensing

It is crucial for neuroscience researchers to determine the 
temperature of brain, an organ highly sensitive to tem-
perature change [60]. The temperature of the brain might 
be influenced by distinct factors such as immunological, 
toxicological, and environmental ones [61]. Moreover, any 
moderate change may cause cell toxicity, alternation of cell 
functions and dramatic variation in behaviors. For brain tem-
perature sensing, fiber optic sensors have been regarded as 
one of the best candidates because of their high sensitivity, 
small dimensions, chemical inertness, and rapid response 
for real-time monitoring. The most traditional and common 

optical fiber adapted for sensing temperature of deep brain 
tissue contains a Bragg grating in the core called fiber Bragg 
grating sensor (FBG) [23, 62]. Figure 4a shows a recent 
example regarding FBG sensors for tracking temperature in 
brain. FBG sensors are capable of tracking the temperature 
by monitoring the specific wavelength of the light reflected 
back from the grating. However, such fiber sensors do not 
resolve small temperature fluctuations, as well as need com-
plex fabrication process and a long length of fiber.

As a matter of fact, when measuring the brain tempera-
ture, high level of precision as well as temperature resolu-
tion less than 0.5 °C are needed [63]. To reach such targets, 
researchers developed a portable optical fiber sensor (OFS) 
based on a rare earth glass deposited on the tip of typical 
silica optical fibers and implanted it to the targeted region 
of brain of rats. Figure 4b states the validated results of tem-
perature measurement through portable optical fiber sen-
sor. However, despite many advantages these sensors pos-
sessed, effectively using the fiber sensors in free-moving 
animals was once a challenge. Therefore, the portable optical 
fiber temperature sensor discussed above was subsequently 
improved by the same research group in order to measure 
the deep structure of the brain of free moving rodents [64]. 
They demonstrated, for the stereotaxic implantation, the 
standard microdialysis guide cannula could be used in the 
fiber-optic temperature probe in order to minimize the risk 
of fiber breakage before and during the measurements. The 
enhanced structure of the probe allowed the optical fiber to 
be inserted and removed as single piece. The sensor achieved 
0.1–0.3 °C temperature resolution and successfully sensed 
the brain temperature in an awake and free-moving rat 
(Fig. 4c).

Furthermore, Rogers and co-workers have successfully 
established innovative designs for multifunctional biore-
sorbable devices that monitor multiple signals including 
temperature, oxygenation, and pressure of mammalians in a 
continuous manner [65, 66]. The proposed design facilitated 
minimally invasive implantation through injection and the 
entire constituent materials could be resorbed after a well-
elaborated operational time [66]. The region of active sens-
ing with PLGA as the substrate consisted of three main parts 
including a photodetector, electrodes and a PLGA fiber. The 
thermal resistance determined by Si nanomembrane pho-
todetector granted the sensation of cerebral temperature 
with a resolution around 0.1 °C. Obtained data are plotted 
in Fig. 4d.

Oxygen Sensing

Oxygen consumed in the activities of brain is transported 
through hemoglobin (Hb) in red cells of the blood. Conse-
quently, activities of brain lead toward vascular responses, 
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so that any variation in parameters related to blood can 
be utilized as surrogates for investigating functions of 
the brain [67]. Hemoglobin is known to have different 
absorption behaviors for near-infrared and visible lights 

depending on whether it carries oxygen or not. Therefore, 
to measure the hemodynamic parameters (e.g., oxygen 
saturation, sO2) as indicators of neural activities within 
the cerebral cortex, intrinsic optical signals (IOSs) have 

Fig. 4  Temperature Sensing. a Scheme of a fiber optic Bragg grating 
sensor to measure the brain temperature. Reproduced with permis-
sion [62]. Copyright 2017, IEEE. b Fabrication and functioning of a 
portable optical fiber sensor (top) and measured temperature from the 
brain (bottom). Reproduced with permission [63]. Copyright 2016, 
Optical Society of America. c Photograph of a improved tempera-
ture sensor using a guide cannula (inlet) and tracked temperature by 

the probe. Reproduced with permission [64]. Copyright 2018, Else-
vier. d Left: Photo of a bioresorbable spectrometer for temperature 
sensing; Middle: axial view of the device implanted into the brain; 
Right: temperature of the brain obtained by the bioresorbable device. 
Reproduced with permission [66]. Copyright 2019, Nature Publishing 
Group
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been extensively used. On the basis of this, diffuse reflec-
tance spectroscopy (DRS) and near-infrared spectros-
copy (NIRS) have been widely applied to hemodynamic 
parameter measurements, including sO2 [68, 69]. How-
ever, when interrogating the activity of the brain, optical 
methods suffer from a limited penetration depth owing to 
scattering of tissues. Using the near infrared wavelength 
decreases the effect of scattering, which enables light to 
reach deep structure of brain. However, the spatial reso-
lution of NIRS is quite low. Moreover, due to the weight 
and size of the components, traditional optical systems 
cannot be applied in free-moving animals [69]. Consider-
ing the factors mentioned above, a single optical fiber sys-
tem is the best option for measuring deep brain activities 
within both unconstrained and free-moving animals. Such 

systems were also employed to examine the hemodynam-
ics parameters, including sO2.

As a proof of concept, a single fiber system was intro-
duced by Yu et al. in order to measure sO2 from the deep 
brain region by adopting continuous-wave reflectance spec-
troscopy within visible range [70]. In such a region, due 
to strong absorption of Hb the optical interrogation vol-
ume became smaller. Accordingly, in their work, through 
Monte-Carlo simulations the estimated volume of the tissue 
probed by the system was about 0.02–0.03  mm3. In addi-
tion, they have also demonstrated in-vivo experiment within 
anesthetized mice to testify the feasibility and accuracy of 
the system in monitoring cerebral oxygenation under deep 
brain stimulation. Figure 5a shows the experimental set up 
as well as calculated sO2 obtained by abovementioned single 

Fig. 5  Oxygen saturation measurement. a Scheme of a fiber optic set-
up to measure the oxygen saturation (top), and obtained oxygen curve 
by the fiber system (bottom). Reproduced with permission [68]. Cop-
yright 2016, Optical Society of America. b Schematic illustration and 
image of a bioresorbable fiber optic probe implanted in a free-moving 
animal (top) and tracked cerebral oxygen by the bioresorbable sensor 

(bottom). Reproduced with permission [66]. Copyright 2019, Nature 
Publishing Group. c Image of a designed fiber ferrule implanted to 
a free moving mouse (left) and measured oxygen saturation (right). 
Reproduced with permission [71]. Copyright 2020, Optical Society of 
America
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fiber system. However, the fiber birefringence is highly sen-
sitive to the fiber movement; therefore, such system can-
not be utilized in awake rodents. In order to overcome such 
limitation, researchers improved previous SFS (single fiber 
spectroscopic) system in 2020. They used an optical fiber 
with customized ferrule and patch cable to monitor cerebral 
oxygen saturation in highly-localized deep brain regions 
within behaving animals for the first time [71]. In this sys-
tem, a multimode optical fiber with 200 µm of core diameter 
and 0.39 of numerical aperture was employed to deliver and 
collect the light to and from the brain. The oxygen satura-
tion was measured in both in vitro and in vivo experiments. 
In in vivo measurements, they monitored oxygen satura-
tion from targeted brain region for 31 days as well as from 
a behaving animal for more than an hour continuously, as 
shown in Fig. 5c.

The current development in real-time monitoring in vivo 
through bioresorbable spectroscopic photonic devices also 
enables the quantification of oxygenation in brain. Such a 
novel tool was constructed with Si membrane detector elec-
trodes, filter layers of  SiOx and  SiNy, a PLGA optical fiber, 
and a  SiO2 thin film encapsulation [66]. Functioning of the 
device is totally reliant on spectral response of Si nanomem-
branes positioned at the tip of the optical fiber. The device 
exhibited its potential in sensing cerebral oxygen saturation 
and cerebral temperature in live animals (Fig. 5b).

Intracranial Pressure Sensing

There are two types of pressure in our body. One is isotropic 
pressure (e.g., blood pressure and intracranial pressure), and 
the other is contact pressure (e.g., intra vertebral pressure). 
The excess of pressure within body’s internal cavities may 
result from several diseases or from the responses toward 
physical injuries. Therefore, to monitor pressure is usually 
an important aspect in evaluating the health of a patient. 
Specially, measuring the brain pressure is crucial in diag-
nosis of the injury of traumatic brain. Intracranial pressure 
varies according to fluctuations in circulatory dynamics of 
the cerebrospinal fluid and cerebral blood. To monitor the 
pressure in such a domain requires an invasive transducer 
that can be inserted through surgery [72–74]. Additionally, 
various fiber based sensors incorporating Bragg gratings 
or Fabry-Pérot interferometers (FPI) have been employed 
for isotropic pressure measurements in the animal body 
[75–78]. Figure 6 presents an example of such an intrac-
ranial pressure sensor, incorporationg an bioresorbable 
implanted FPI sensor coupling to a PLGA fiber [65]. This 
device was implanted in the intracranial region of animals to 
sense intracranial pressure, which provides promises in clini-
cal uses. In order to obtain detailed information of the brain, 
direct attachment of the electrode array on the brain could 

be utilized to record and map electrophysiological signals 
with a high resolution.

Photodynamic Therapy

Photodynamic therapy (PDT) is a modern form of photo-
therapy that destroys tumor cells in a minimally invasive 
manner. This technique combines the usage of special 
drugs called photosensitizing (PS) agents, oxygen, and light 
sources such as light-emitting diodes (LEDs), lasers or fluo-
rescent lamps [79]. Nowadays, such a therapeutic method is 
a well-established treatment employed to treat diverse kinds 
of cancers such as brain, lung, bladder, ovarian, esophageal, 
skin, and breast cancers. It is reported that through light 
irradiation, a particular photosensitizer preferentially accu-
mulated within the abnormal cells, reactive oxide species 
(ROS), as well as toxicity of singlet oxygen that limits nutri-
ent and oxygen supply could be generated to kill cancer cells 
without destroying healthy ones [80]. Several optical meth-
ods have been used clinically to overcome the weakness of 
low light penetration depth (< 1 cm) via biological tissues 
[19, 80–82]. It is noteworthy that the biocompatible optical 
fibers with ideal optical properties such as low optical loss 
and high level of transparency may be used to transmit the 
light to deep targeting regions of biological tissues.

GBM (glioblastoma multiforme) is a most aggres-
sive kind of brain tumor with a median survival of about 
14.6 months for adults. In previous studies, PDT has been 
proposed as a potential treatment of GBM. Moreover, PDT 
highly relies on ROS generation in microenvironment of the 
tumor, which is related to the concentration of PS and oxy-
genation. Hence, ROS generation can be controlled by local-
izing the PS and confinement of light in targeting microen-
vironment of the tumor, as shown in Fig. 7a [83].

Researchers not only have shown that the photodynamic 
anticancer of mitochondrial-targeted photosensitizer-loaded 
albumin nanoparticles (PS@chol-BSA NPs) is efficacious, 
but also have demonstrated the high capability of PS@
chol-BSA NPs in targeting the brain tumor. Hence, this 
mitochondria-targeted photosensitizer paved the way for 
several promising therapeutic methods based on photody-
namic therapy. Furthermore, in the recent studies, it was 
found that PDT effect of PS@chol-BSA NPs was improved 
by the light confinement induced by fiber optic cannula in 
the mouse brain. Use of optical fibers increases the dose of 
light and decreases the phototoxicity in targeted and non-tar-
geted brain regions. Kang and Ko reported in vivo inhibition 
of brain tumor when using fiber without and with the can-
nula, as shown in Fig. 7a [83]. Tumors in mice were treated 
with PS@chol-BSA NPs as well as irradiated via optical 
fiber. The results indicate that the brain tumor became much 
smaller with the help of the cannula.
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Besides wired PDT devices, wireless devices for chronic 
PDT in deep tissues have also received considerable atten-
tion. In some of these devices, NIR light with high pen-
etrating property was used to transmit light power to deep 
regions, while upconversion nanoparticles (UCNPs) were 
used to convert NIR to light with a shorter wavelength, 
which the photosensitizers response to. To restrain the 
movement of these nanoparticles and prevent potential drop 
in light delivery property, optic fibers have been used to 
sequester these UCNPs. Teh et al. have reported an upcon-
verting implant consisting of UCNPs encapsulated by an 
optic fiber with poly(ethylene glycol) diacrylate (PEGDA) 
as core and fluorinated ethylene propylene (FEP) as clad-
ding [84]. With this flexible and biocompatible device and 
photosensitizer 5-ALA, chronic PDT therapy for as long as 
16 days was conducted in a deep brain region of mice with 
GBM. It was observed that, when treated with the upcon-
version fiber, NIR input and photosensitizers, the tumor 
regressed over time, as shown in Fig. 7b.

Delivery of Neurotrasmitters and Drugs

Multifunctional fibers can also serve as a powerful tool 
for delivering drug and neurotransmitters into the brain in 
a controllable manner. The neurotransmitters are impor-
tant chemicals with the ability of transmitting information 
between neurons. Moreover, they are also vital for brain to 
work properly and any abnormalities in them cause mental 
disorders. Recently, Park et al. [85] designed an electrocata-
lytic sensor with an implantable multi-material fiber made of 
PC and COC fabricated through thermal drawing with three 
hollow channels. This sensor platform achieved controlling 
the NO generation correlated with neuronal signaling in the 
mouse brain. An illustration of this implantable probe is 
shown in Fig. 8a.

The above-mentioned features led scientists to develop a 
flexible optical fiber out of polymers through TDP, which 
was thinner than human hair [44, 51]. Furthermore, micro-
fluidic channels were implemented into such fibers in order 

Fig. 6  Intracranial pressure sensing. a Image of a Fabry-Pérot inter-
ferometer (FPI) based pressure sensor placed on human brain model. 
b Scheme of the bioresorbable FPI pressure sensor. c Image of a 
PLGA optical fiber formed at the tip of a single-mode fiber. d Cross-

sectional view of the device set up during animal experiment. e Opti-
cal spectra at different pressures obtained by the FPI pressure sensor. 
Reproduced with permission [65]. Copyright 2019, AAAS
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to transmit a set of optical, chemical, and electrical signals. 
On the basis of the idea that the materials used should have 
similar mechanical and thermal properties, researchers 
selected various polymers with different refractive indices. 
During certain tests, through the integrated microfluidic 
channels in fiber, the drug was transmitted successfully to 
the deep structure of brain tissue. Figure 8b shows such a 
device tested within a mouse brain [51].

Using multifunctional fiber with drug delivering tube, 
switchable photopharmacology can also be achieved. 
Recently, Frank et al. [86] used a multifunctional fiber to 

deliver a photoswitchable capsaicin analog, red-AzCA-4, 
to control the TRPV1 ion channel in a targeted region of 
mouse brain. The red-AzCA-4 isomerizes between the cis/
trans forms with light of different wavelength, and its cis 
form activates TRPV1 more strongly than trans. Therefore, 
they could control the nueral circuits by delivering such 
light-controllable ligand and different light with a single 
mutifunctinoal fiber through photopharmacology, which is 
meaningful for investigating underlying molecular mecha-
nisms of brain activities.

Fig. 7  Photodynamic therapy. a Left: Schematic diagram of a dual-
selective photodynamic therapy by a fiber cannula and mitochondria-
targeted photosensitizer, Right: Comparison of braintumor treatment 
with (bottom) and without (top) fiber optic cannula. Reproduced with 
permission [83]. Copyright 2019, Royal Society of Chemistry. b Left: 

Scheme of a wireless upconversion fiber implant for chronic deep 
region photodynamic therapy, Right: Comparison of brain tumor 
treatment over time of photodynamic therapy and control. Repro-
duced with permission [84]. Copyright 2020, Wiley–VCH



36 Advanced Fiber Materials (2022) 4:24–42

1 3

Fig. 8  Neurotransmitter and drug delivery. a Left: An NO genera-
tion-controlling fiber implanted into a mouse brain; Right: Normal-
ized fluorescence signals through different conditions. Reproduced 
with permission [85]. Copyright 2020, Nature Publishing Group. 

b Left: Photo of a mouse with an implanted multifunctional fiber; 
Right: Drug-delivery capability of a multifunctional probe. Repro-
duced with permission [51]. Copyright 2015, Nature Publishing 
Group
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pH Sensing

Another possible way of understanding the complex brain 
function in health and disease is high spatial and tempo-
ral resolution analysis of chemical signals in the brain. 
In maintaining normal brain functions, pH is one of the 
most important factors. To date, different technologies 
such as nuclear magnetic resonance (NMR) [87], fluo-
rescent-based chemical probes [88], and electrochemi-
cal techniques [89] are used to sense the pH changes of 
brain tissue and detect abnormal physiological activities 
of the brain in a timelier manner. Recently, Guo et al. 
have developed a class of fiber-based probe that is capa-
ble of capturing the changes of pH at multiple pixels in 
deep brain regions with high spatial (250 um) and tem-
poral (30 Hz) resolutions (Fig. 9) [90]. This miniaturized 
probe relies on a light-addressable potentiometric sensor 
(LAPS) linked to a convergence multimodal PC/PMMA 
fiber.

Possibilities for Future Applications

In this section, we present a brief summary of the applica-
tions of optical fibers in body parts other than the brain. 
From these works, we may borrow some concepts for future 
fiber-optic devices for brain.

As stated earlier, increasingly more optical fibers made 
of stretchable, soft, biocompatible, and biodegradable mate-
rials have been developed for biomedical applications and 
personal health care, several of which are discussed in detail 
here [91]. For instance, an optical fiber for strain sensing has 
been fabricated. Figure 10a shows the process and results of 
strain sensing with an optical fiber composed of ionic and 
covalent polymers. Such hydrogel fibers were capable of 
enduring the motions of the body and elasticity of skins [92]. 
Using hybrid alginate-polyacrylamide, stretchable and tough 
step-index hydrogel based optical fibers were fabricated 
through dip-coating and modeling process and were able to 
endure strain of up to 700%. Moreover, the levels of glucose 
in blood play a key role in measuring the amount of blood 
sugar secreted within a body. Yetisen et al. demonstrated a 
hydrogel fiber made of poly (acrylamide-co-poly(ethylene 

Fig. 9  pH sensing. Top-left: Cross-sectional view of the multi-mate-
rial based fiber structure used for in  vivo pH sensing in the brain; 
Top-right: Photograph of the fiber structure; Bottom-left: Scheme 
for working principles of simultaneous optical stimulation and pH 

recording; Bottom-right: Optically recorded pH signals in response to 
optogenetic activation. Reproduced with permission [90]. Copyright 
2021, Elsevier



38 Advanced Fiber Materials (2022) 4:24–42

1 3

glycol) diacrylate) functionalized with phenylboronic acid 
as core and Ca-crosslinked alginate as cladding. Phenylbo-
ronic acid integrated in the core served as a glucose-sensi-
tive chelating agent for sensing glucose [93]. A variation in 
hydrogel density alters the refractive index of the aforesaid 
hydrogel fiber and consequently influence the propagation 
of light through it. Therefore, change in RI of the fiber core 
helps to determine glucose concentrations. Results of such 
fibers implanted to a porcine tissue for sensing glucose are 
shown in Fig. 10b.

Neurotransmitters are crucial markers of neural activi-
ties. Compared to traditional methods such as microdialy-
sis that requires subsequent separation and detection [24, 
94] and electrochemical methods such as fast scan cyclic 

voltammetry [95, 96], optical fiber-based devices can 
accomplish in-situ sensing with high selectivity. For exam-
ple, Haghparast and co-workers applied a tapered optical 
fiber immobilized with dopamine-binding aptamer to per-
form label-free dopamine sensing. When combined with 
dopamine, the conformation of the aptamer changes and 
induces refractive index change around fiber surface, which 
can be detected with the tapered fiber. The limit of detection 
of this device reached 37 nM, with minimized interferences 
with epinephrine and ascorbic acid [97].

Surface plasmon resonance (SPR) is a commonly used 
method to detect chemical substances with optical fiber. In 
a typical SPR sensor, there is a metal film in contact with 
the core of a fiber, whose dielectric constant changes along 

Fig. 10  Other possible applications that can possibly be adopted for 
brain research in the future. a Top: Photo of an optical fiber contain-
ing three sensors with light (bottom) and without light (top) illumina-
tions; Bottom: The fiber attenuation at varied strain. Reproduced with 
permission [83]. Copyright 2016, Wiley–VCH. b Top: An optical 
fiber made of hydrogel implanted in tissue to measure the glucose; 

Bottom: Measured fiber diameter change (related to glucose concen-
tration) dependent on pH. Reproduced with permission [84]. Copy-
right 2017, Wiley–VCH. c Left: Schematic illustration of a rat bone 
defect model treated via a biodegradable fiber guiding green light; 
Right: Estimated bone morphological structures within time. Repro-
duced with permission [100]. Copyright 2020, Wiley–VCH
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with its molecular absorption, which is related to the con-
centration of specific molecules. By measuring the dielec-
tric constant, concentration information can be obtained. 
To improve the sensitivity of SPR, researchers modified the 
metal film by adhering colloidal substances and proteins to 
its surface. Ribaut et al. used plasma fiber Bragg grating to 
detect healthy lung tissue and tumor tissue with the help of 
CK17 markers, which can better identify tumor tissue in 
in vitro biopsy [98]. Multimaterial fibers have also been used 
in localized SPR sensing [99].

Another approach that has attracted noticeable attention 
is using fibers made of biodegradable materials. The tools 
fabricated out of these materials are very useful in healthcare 
due to their full biodegradability. The PLLA biodegradable 
fibers used as neural interfaces discussed earlier also have 
been applied in bone regeneration with the mid-wavelength 
light (green) [100]. Figure 10c shows an example of such 
application. Though these works are from non-brain studies, 
these functionalities are also highly demanded in brain stud-
ies. Therefore, these devices could inspire novel fiber-optic 
devices for brain in the future, or even be used directly in 
brains after proper modification. For example, the sensor for 
lung tumor detection using tiled fiber Bragg grating can be 
used in brain therapeutics if the markers are replaced with 
those sensitive to brain tumors. However, it is noteworthy 
that the mechanical and optical properties of brain are dif-
ferent from those of other organs. Thus, when transform-
ing these devices to devices for brain, modifications like 
replacing with soft materials and tuning the wavelength are 
necessary.

Advanced material, structure and processing designs 
have been continuously developed, especially in multimate-
rial fibers. By combining them with waveguides, new mul-
tifunctional optical fibers could be produced and used for 
more diverse applications. For example, semiconductors 
have been used in optoelectronic multimaterial fibers for 
all-fiber-integrated devices [101, 102]. Besides, nanoscale 
metallic glass fiber has been used in multimaterial fiber 
for deep-brain electrical stimulation and recording [103]. 
Microstructured fibers have also been fabricated, such as 
cantilever-like strucutre for pressure sensing [104] and hier-
archical textured surface for nerve regenaration [105]. Addi-
tionally, structures and processing techniques used in other 
structural fiber sensors can also be used in optical fibers 
[106–108]. These designs could also provide new functions 
and opportunities if used in brain research.

Summary

To conclude, here we review the applications of advanced 
optical fiber systems for brain research, including widely 
used optogenetic and fluorescence recording tools, as well 

as the most recent progresses in the sensing of other brain 
activities and biochemical interrogations. Some applica-
tions including strain, glucose sensing and tissue regen-
eration have not been reported in brain studies yet, but it is 
envisioned that these directions would become viable in the 
future. With their unique advantages, it is expected that opti-
cal fiber-based devices for brain will keep flourishing in the 
future, with more new applications demonstrated and exist-
ing applications moving towards clinical uses. Using softer, 
more biocompatible and bioresorbable materials, increasing 
the number of sensing sites, integrating multiple functionali-
ties and enhancing movement stability will still be the trend 
of this field. We anticipate that these and other optical fiber-
based techniques will not only be helpful in fundamental 
brain research, but also provide a viable platform for future 
diagnostics and therapeutics in neurological diseases.
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